Imagine an alien. If you’ve been influenced by movies and television at all, the creature you’re picturing is probably two-legged, two-armed, bipedal and with a reminiscently human layout – head, eyes and mouth somewhere near the top. And while most of us recognise that this vision of extra-terrestrial life is a bit silly, conversations about life elsewhere in the universe are often still painfully unimaginative.

Genetically modified organisms, especially plants, get a lot of hate. People – even some very environmentally conscious people – seem to fear or hate GM crops. Yet, as someone who is very worried about climate change, very worried about the human-induced mass extinction event that is happening before our eyes, and worried about the livelihoods of farmers and about those people that have so little food they go to bed hungry every night…


The Curious Case of Turritopsis

The Immortal Jellyfish

The idea of ageing backwards might seem like the kind of far-fetched tale that only the likes of Brad Pitt could sell, but for some of our distant, under-water cousins, it’s just a really bad day. A few unusual jellyfish species have evolved the ability to completely rearrange the cells in their bodies and return to an earlier life stage. They use this curious talent to deal with times of stress; if adult jellyfish (medusa) find themselves in unfavourable conditions, they can simple revert to their juvenile form and wait it out until things improve. Scientists believe this may enable them to endure poor environments and ultimately spread across the globe into regions other jellyfish cannot reach.

Continue reading

Novum Manu

The Science of Artificial Hands

Our hands are possibly our most versatile tool; we use them for almost every aspect of our daily lives and few of us could imagine surviving without them. For those unlucky enough to suffer from congenital hand malformations, or amputees as a result of disease or injury, this is even more clear. In the US, over 40,000 people have undergone hand or arm amputation, most commonly due to injury, cancer or vascular complications of diseases such as diabetes. Although limb loss may once have been a truly debilitating and lifetime loss, remarkable advances in artificial limb technology are making the outlook for amputees much better.

Continue reading

Animal Personality Part II:
The Evolution of Personality

The field of research into personality and behavioural syndromes in animals has blossomed over the past few decades. With ample evidence for it’s existence, biologists have begun to consider its evolution; what is the adaptive benefit of personality? How are multiple personality types maintained in a population? Why do personalities exist when they sometimes result in maladaptive responses?

All these questions, and any evolutionary questions we might care to ask, make the assumption that personality is heritable. Without heritability, personality cannot be passed from generation to generation, and cannot be subject to natural selection. There is now plenty of evidence for high heritability of many personality traits in animals, although there is also an important influence of the environment too. Heritabilities estimates vary, from 0.22 – 0.61 in wild great tits, 0.32 in social spiders, 0.54 – 0.66 in humans and 0.2 – 0.8 in dumpling squid. These genetic influences may in part be reflected in brain morphology; one study in humans found differences in brain structure relating to neuroticism, conscientiousness, and extraversion. More neurotic people have a smaller total brain volume and a smaller frontotemporal surface area, whilst extraverts have a thinner inferior frontal gyrus.

Continue reading

Animal Personality Part I:
Individual Differences

To even the most casual observer, it is clear that people are not homogenous in their behaviour, and that this goes beyond possible nurture influences such as cultural upbringing. Individuals vary in their behaviour in a consistent manner; some people are generally more aggressive, friendly and adventurous in every aspect of their lives. So obvious is this observation that we even have a word for it – personality. Likewise, anyone who has spent any significant amount of time in the company of animals will almost certainly acknowledge that they are not all the same. The extent to which this is apparent varies from species to species, of course, but the observation is not a revolutionary one. And yet, until relatively recently the concept of ‘personality’ in non-human animals was revolutionary. And it has had to work hard to shake off the criticism of anthropomorphism and pseudoscience.

It was long assumed that animals were infinitely plastic in their behaviour, being able to respond adaptively to all environments. When people actually started to look, however, it became apparent that this wasn’t the case. Individuals showed substantial variation in their responses to certain events and environments, and these responses were not always adaptive. There was a strong correlation however, in the responses of a single individual over time. Personality, you say?

Continue reading

What Else Makes Us Human?
Fire

Over the last few months I’ve been discussing the characteristics that make us human, and which of the classic ‘uniquely human’ traits, really are ours and ours alone. But one aspect of human behaviour which I have not discussed so far is our use of fire. No other animal has learned to harness and control fire as humans have.

A recent discovery of wood ash along with animal bones and stone tools in a cave in South Africa suggests that humans may have used fire as early as 1 million years ago. This is around 300,000 years earlier than previously thought, and may indicate that earlier hominid species such as Homo erectus were using fire. Other tentative support for fire use by early hominids such as H.erectus and A.robustus have been found in South Africa and Kenya, possibly as early as 1.5 million years ago. Further evidence from Northern Israel in the form of burnt flint tools and plant remains indicates that H. erectusmay have been controlling fire around 800,000 years ago.

Continue reading

The Social World of Slime

Social behaviour in animals is not uncommon, and we are rarely surprised to observe cooperation in nature. However, most explanations for cooperative behaviour rely upon a certain level of cognitive ability. Cooperating willy-nilly leaves individuals open to cheaters, so successful and long-term cooperation between individuals often relies upon individual recognition. Many social groups are composed of relatives. This makes a lot of sense, as helping relatives yields benefits without the need for reciprocation in the future, because relatives share genes. But still, you might expect that even this requires basic intelligence – you need to be able to recognise who are your relatives.

Continue reading

Reasons Why Evolution is True Part X:
Convergent Evolution

When you design many objects that perform similar tasks, the logical strategy is to reuse the same design, perhaps with small modifications, for each object. There would be little point in coming up with a new design every time, right!? In nature, however, there are many species that do similar things but have arrived at their method through different designs. This is known as convergent evolution.

Intelligent design, and decent by modification, predict different patterns of similarities and differences between species. Evolutionary theory, which places all living things on a tree of relatedness, leads us to expect that species that are more closely related to each other should tend to be more similar. This is because they have both evolved from a recent ancestor. This ancestor has been ‘modified’ in various ways by natural selection to produce the two (or more) daughter species, but with a shared starting point for these modifications, we expect a fairly similar outcome. Traits that are shared between species due to shared ancestry are known as homologies. Homology has been the basis for determining relatedness between species (phylogeny) for hundreds of years. However, as early taxonomists noted, there are some occasions when species share traits despite the lack of a recent common ancestor. Often these species have reached a similar solution to a shared problem, despite being only very distantly related. This is known as convergence, and the more we look for it in nature, the more we find.

Continue reading

What Else Makes Us Human?
Drug Use in the Animal Kingdom

Whilst writing the series on “What Makes Us Human?”, I started thinking about less obvious, less traditional ideas of what traits are truly human, and human alone. One characteristic occurred to me that seemed obviously to be unique to humans: recreational drug use. It seemed implausible that animals in the wild were indulging in drug abuse purely for their own entertainment, and I wondered if this could give some perspective on what it means to be human. But, as it turns out, I was wrong.

Continue reading

What Makes Us Human Part IV
Culture and Faith

What makes us human? Many of the characteristics commonly listed as ‘uniquely human’, are in fact, upon closer inspection, NOT. We are not alone in our use of tools, language or a notion of self. We are not unique in our bipedal stance, our opposable thumb or our intelligence. Our societies seem simple and crudely constructed when compared to those of a bee or a termite. Perhaps there is one thing left, however, that is truly human – art. Surely culture, art and religion are something only humans have constructed? And if that is the case, what is it about humans that led us and only us, to create such a rich array of art and ritual, which appears, in evolutionary terms, to be superfluous to our survival?

Continue reading

Biological Linguistics:
The Difference Between Chimps and Monkeys

Chimpanzees and Monkeys

Non-scientists often make mistakes when talking about science. This is understandable. I’m sure I make mistakes when I talk about politics! But there is one mistake, one seemingly inconsequential error, that I find completely intolerable. The error I am referring to is the routine use of ‘ape’ ‘chimpanzee’ and ‘monkey’ as interchangeable terms for the same entity.

The word chimpanzee refers exclusively to members of a single genus; Pan. This genus contains two species; the common chimpanzee (Pan troglodytes) – what most people think of when they imagine a chimpanzee, and which have been famously humanised in television shows for decades – and the bonobo chimpanzee (Pan paniscus) which is found only in the Demoncratic Republic of Congo.

Continue reading