Imagine an alien. If you’ve been influenced by movies and television at all, the creature you’re picturing is probably two-legged, two-armed, bipedal and with a reminiscently human layout – head, eyes and mouth somewhere near the top. And while most of us recognise that this vision of extra-terrestrial life is a bit silly, conversations about life elsewhere in the universe are often still painfully unimaginative.

Genetically modified organisms, especially plants, get a lot of hate. People – even some very environmentally conscious people – seem to fear or hate GM crops. Yet, as someone who is very worried about climate change, very worried about the human-induced mass extinction event that is happening before our eyes, and worried about the livelihoods of farmers and about those people that have so little food they go to bed hungry every night…


What Makes Us Human?

Understanding the evolution of Homo sapiens, and how humans came to be human, has been a fascination for people since Darwin’s time, but it has also proved to be one of the most controversial of the sciences. Humans and Chimpanzees diverged about 7 million years ago and during this time a great deal of anatomical and behavioural changes occurred which now distinguish us from our closest relatives. Despite this, we still share over 99% of our genetic make-up with Chimpanzees; only 1% of our genes truly make us human. What is the manifestation of this 1%? Some of these differences are very clear visually; we are taller and less hairy, with larger brains and an upright, two-legged stance. Other differences are slightly more subtle; we have language, we use tools, we have culture and art enabled by abstract thought, we have a concept of self… but as that list continues, it becomes increasingly difficult to determine whether Chimpanzees, or indeed other animals, also share these qualities. If Chimpanzees can be taught language, then this indicates they have a brain capable of understanding and learning language, and thus, surely they can in some sense be said to have language themselves? Other characteristics are even more difficult to pin down; how do you measure self-awareness? Although there is a long list of traits that most people would consider to be exclusively human, the situation is in fact far less clear cut than that.

Continue reading

Reasons Why Evolution is True

Across the next 10 articles, I present a few of the quirky examples of evolution that we can readily observe in nature. It is by no means an exhaustive list, but merely a set of stories which I feel illustrate well the power of evolution to create complexity, and how we can see evidence for natural selection by looking carefully at the idiosyncrasies it has produced.

The examples I provided in this series can be broadly categorised into a few themes; coevolution (Fig Wasps and Hawk Moths), evolutionary constraints on adaptation (Pandas, The Human Eye), convergent evolution (Birds and Bats), adaptive radiation (Galapagos Finches, Ring Species) and homology (DNA and the Pentadactyl Limb). And within each of these categories, there are numerous other stories I could have told to illustrate my point. But the point I am trying to illustrate is that evolution is a real phenomenon. Charles Darwin’s theory of evolution by natural selection is one which explains the natural world around us in both a satisfying and verifiable way.

Continue reading

Ants: Civilisation in Minature III

Crime and Punishment

Ant societies are remarkably complex and ants exhibit extremely high levels of cooperation. Workers will often sacrifice their own lives to defend the safety of the nest. However, just like human societies, ant nests are also rife with conflict. Where there is cooperation there will always be individuals who try to take advantage and cheat the system.

The defining characteristic of ant colonies (and social insects in general) is reproductive division of labour, where reproduction is dominated by one or a few individuals, known as queens. In this matriarchal system, reproduction is forbidden for most colony members, and in many ant species worker ants are physically incapable of mating. Despite being unable to mate, due to their unusual genetic system, ant workers can still lay male eggs. This gives them the opportunity to try and cheat the system, and in many ant species workers have been found to illicitly try and lay eggs, when the queen isn’t looking. Such crimes do not go unpunished, however, and in many species the honest workers will punish cheaters, either through physical aggression, or by destroying the illegally laid eggs.

Continue reading

Reasons Why Evolution is True Part V:
The Quirky Human Eye

The mammalian eye, a refractive cornea non-compound eye, to be precise, is a wonderful example of the bizarre quirks of evolution that we see in nature. These are only really bizarre, of course, from the view-point of intelligent design.

Our visual system is made up of many tiny light receptors on our retina known as rods and cones. Each receptor picks up a small portion of light and relays the message to our brain via nerve connections in the optic nerve. Information from thousands of light receptors is pieced together by the brain to form an image of the world around us. The rest of the eye is designed to focus light onto the retina in the most efficient way possible. Logically, you would expect, therefore, that the eye would be designedso that nothing blocked light from reaching the retina. And yet, in the mammalian eye, the nerves and blood vessels connecting to the rods and cones protrude outwards in front of them. In order to connect back to the brain, the nerve fibres must then break through the wall of light receptors, creating a blind spot where they join the optic nerve.

Continue reading

How to Read a Mind

Mind reading no longer exclusively belongs to the domain of science fiction writers and mediums. Over the last 50 years, researchers around the world have been working on a system known as the brain-computer interface (BCI) which allows direct communication between the brain and an external device such a computer or a robotic limb. The main goal of this research is to develop technology capable of restoring sensory function to the blind or deaf, and restoring movement to patients suffering from paralysis. Major strides have been made in this endeavour over the last decade, and BCI technology is now even being adapted to commercial purposes such as gaming.

BCI technology is possible because of the way in which the brain transmits messages within itself and to other areas of the body. The brain is composed of around 100 billion cells called neurons. Messages are sent from neuron to neuron as an electrical impulse, created by ion imbalances in neuronal membranes. Neurons are insulated by a coating known as the myelin sheath, which prevents most, but not all, of these electrical impulses from escaping. The tiny portion of the electricity which escapes from the myelin sheath can be detected and this signal can be interpreted by computers. A second feature of the brain is also key to the success of BCI: neural plasticity – the ability of the brain to adapt to new situations. Patients suffering with brain damage illustrate neural plasticity; in many cases patients are able to, over time, adapt other areas of their brain to perform the tasks of damaged regions. Neural plasticity also enables the brain to adapt to interpret new input, such as that provided by the brain-computer interface.

Read full article in Experimentation >>

Ants: Civilisation in Miniature II

Agriculture
They might seem simple and insignificant, but like humans, ants have discovered the benefits, and costs of agriculture. In the ant world there are species which farm livestock, protecting them from predators and milking them for rich nectar, and others which cultivate tiny underground fields of fungus, pruning it and using chemicals to prevent disease and pests.

Crops and Livestock

Humans developed farming around 10,000 years ago, but the ants have been at it much longer. In its simplest form, ant farming consists of simply pruning the surrounding forest. Ants of one species found in the Amazonian rainforest have been found to remove unwanted plant species when they appear in its foraging area. Although simple, this ‘weeding’ behaviour can be devastating, with ants clearing huge sections of forest of any species which is not beneficial to them.

Continue reading

The Science of Sleep

Sleep is one of the most important aspects of our lives. Along with food, water and sex it is one of our most fundamental needs. Most people spend about 30% of their life sleeping; in a lifetime most people can expect to lose over 200,000 hours to sleep. This astonishing figure equates to around 9800 days or 27 years! What a waste! Imagine what we could achieve if we didn’t have to sleep.

It’s not just us, though. The need for sleep is as pervasive in the animal kingdom as hunger. All animals sleep, in some way or another. So why do we do it, how is it controlled, and how can the physiological controls of sleeping help us to understand other aspects of our existence?

A great deal is now understood about the biological control mechanisms underpinning the sleep-wake cycle. This cycle is circadian, meaning that it repeats approximately once every day, and the regulation of sleep is strongly influenced by daily variation in light intensity. However, there is also internal control of sleep; if kept in total darkness, animals will still experience a sleep cycle. Universal across the animal kingdom, the centre of communication between external and internal influences is the pineal gland, located at the top of the brainstem, close to the surface of the skull. In many non-human animals, the skull is sufficiently thin that the pineal gland is able to detect some light passing through, and hormones that control the sleep cycle are stimulated directly by the presence or absence of light. However, in humans the skull is far too thick for this system to work. Instead, light levels are assessed directly by the eyes, and information from the eyes is passed on to the suprachiasmatic nuclei (SCN) which relays the information back to the pineal gland. Information about external conditions is combined with our internal clock to determine whether we should feel tired or awake.

Read full article in Experimentation >>

What a Way to Make a Living

Nine to five. The whole western world seems to based around this simple concept. And perhaps for many people this seems to work just fine. If you’re a morning person, the nine to five regime works perfectly with your natural biological rhythms. But what if you’re an evening person? Research has shown a real genetic distinction between morning and evening people, and this distinction affects not just your preferred sleep-wake cycle, but daily body temperature rhythms, and variation in concentration and attention span.

Estimates suggest that just 15% of the population are true morning people, with about 25% being true night owls. The rest of the population is intermediate. If such a small fraction of the population is completely suited to a nine to five schedule, then why has this time frame become the standard? And does this mean that 85% of the population are not working to their full potential, simply because they are being forced into an unnatural work rhythm?

Continue reading